Verified Validation for Affine
Scheduling in Polyhedral
Compilation

Xuyang Li, Hongjin Liang, Xinyu Feng

Nanjing University

Background

* Performance of modern software relies on compiler optimizations

* Nested loops are optimization targets due to its heavy numerical
computation, like in scientific computing and machine learning

* Optimization Goals
* Enhance locality of memory access
* Increase program parallelism

for 1 in [1, N]: parallel for 1 in [1, NJ:
S: A[i] = B[i-1] + C[i+1] S: A[i] = B[i1i-1] + C[i+1]

(Suppose arrays A, B, C are non-aliasing)

Background

* For nested loops with complex memory access pattern, loop
transformations are needed to achieve better optimization

* Like loop fusion, interchange, skewing, etc...

* We reason the dependences of instruction(s)'s iterations for such
transformation's correctness, according to the memory access
expression

for 1 in [1, NJ: Is the |00p
for 3 in [1, N]:
S: A[1][J] = A[i+1]([3] + A[1-1][J-1]

Y /

Example

]
-5
rOA
Unroll each iteration of the instruction(s) 411
into a coordinate system with the loop I PR P!
variables as the axis.
-2 ._‘._
for i in [1, NJ: 4 \
. . - o
for jJ 1n [1, N]: .
S: A[1][J] = Al1+1][3] + A[1-1][J-1] %

Iteration

Execution Order

Example ‘

j
Write after Read (WAR) dependence: —4
iteration (i, j) reads A[i+1][j], iteration (i+1, 4
j) writes A[i+1][j]. Not permutable!

for 1 in [1, NJ:

for jJ in [1, N]J]:

of

St A[i]['{j[iJrl][j] + A[1-1][]-1] -

Iteration
Execution Order

Dependence

Example

Read after Write (RAW) dependence: —4
iteration (i,j) writes A[i][]j], iteration

(i+1,j+1) reads A[i][j]. Not permutable!

for 1 in [1, N]:

for 3 in [1, NJ:

St A[l][{j[iJrl][j] + A[1-1][]-1] -

Iteration
Execution Order

Dependence

Example

Old execution order is now useless. —H
Only dependences matter. 3

for 1 in [1, N]:

for 3 in [1, NJ:

) AN

St A[l][{j[iJrl][j] + A[1-1][]-1] -

Iteration

Dependence

Example

Is the loop ? s

Without breaking dependences?

_4]
s Iteration
—2

for 1 in [1, N]: P — Dependence

for 3 in [1, NJ:

S: A[1][g] = Al1+1][3] + A[1-1][J-1] _

) AN

Example

Is the loop ? 5

Without breaking dependences?

—4-
- for iterations with same j
- no due to inner dependences Iteration
- other possibilities? —3
ol
for 1 in [1, N]: P Dependence

for 3 in [1, NJ:

St A[i]['{j[iJrl][j] + A[1-1][7-1] _
o 7 3 4 3

) AN

Example

A
/
Is the loop ? 5
Without breaking dependences? 4l
- for iterations with same j
- no due to inner dependences Iteration
- other possibilities? 3%/
- iterations with same i+j
—2—4%
for 1 in [1, N]: P / — Dependence
for 3 in [1, NJ: .
S: A[11[3] = A[i+1]1[3] + A[i-1][j-1] I .
w o1 & 3 4§ 3 %

for 1 in [1, N]:

S:

Example ‘

Now we can determine a new

execution order, not breaking

dependences

for 3 in [1, NJ:

Al1] U[frl] [J] + A[1-1][J-1]

Iteration
Execution Order

Dependence

Example

And we can regenerate a new nested
loop respecting new execution order,
whose inner loop is parallelizable.

for 3’ in [1, 2*N-1]:
for i’ in [max(l, j’-N+1),
min(N-1, j’-1)1]:
S: A[171[(3’-1i’)] = A[i"+1]1[(' -i")]
+ A[17-11[(3"-i")-1]

Iteration
Execution Order

Dependence

Example

for 3’ in [1, 2*N-1]:

for i in [1, N]: for i’ in [max(l, j’-N+1),

for 3 in [1, NJ: _
N-1, -1

S Al = AL s: A[i’][(j'ﬁ?;] - AJ[1’+)1}

+ A[1-1]1[73-1]) e A[Lf-1]

loop skewing + loop interchange

Qo/yhedra/ Model

for 37 1in [1, 2*N-1]:
for 1’ in [max(1l, j’-N+1),
min(N-1, j’-1)]:
S: A[1"][(3'-1")] = A[1"+1]
+ A[1"-1]

for i in [1, NJ:
for 3 in [1, NJ:
S: A[1][3J] = A[i+1][7]
+ A[1-1]1[73-1]

loop skewing + loop interchange

Iteration

— Domain - “Polyhedron”
Execution order

— Schedule

Dependence

Qo/yhedra/ Model

for 3’ in [1, 2*N-1]:
for 1’ in [max(1l, j’-N+1),
min(N-1, j’-1)]:
S: A[1"][(J'-1")] = A[l’+1][(
+ A[1"-1]

for i in [1, NJ:
for 3 in [1, NJ:
S: A[1][3J] = A[i+1][7]
+ A[1-1]1[73-1]

loop skewing + loop interchange

Polyhedral Compilation

~.

of

Extraction

for i in [1, NJ:
for 3 in [1, NJ:
S: A[1][3J] = A[i+1][7]
+ A[1-1]1[73-1]

— Scheduling ..

'}
/
_5

>

—21

4

~

Code
Generation

of

0

for 37 1in [1, 2*N-1]:
for 1’ in [max(1l, j’-N+1),
min(N-1, j’-1)]:
S: A[1"][(3'-1")] = A[l’+1][(’
+ A[1'-11[(3’

Polyhedral Compilation

[Loop) extraction ‘(Polyhedralw scheduling fPonhedraI) codegen f J

J 'L Model J 'L Model J 'L Loop

Our work:

Verified Validation for Polyhedral Scheduling

* Implement and verify a validator for (affine) scheduling in polyhedral compilation

* Apply to Xavier Leroy et al.'s verified compiler CompCert [1], showing its usability

* Apply and evaluate the validator with the (affine) scheduler of Uday Bondhugula et

al's polyhedral compiler Pluto [2], showing its practicality

4[Validator Ji

f PO'VhEdraIW scheduling f PonhedraI)

—> Output: “true”or “unknown”

[1 extraction
Loop

)

'L Model J 'L Model J

codegen { Loop J

Our work:

Verified Validation for Polyhedral Scheduling

* Implement and verify a validator for (affine) scheduling in polyhedral compilation

* Apply to Xavier Leroy et al.'s verified compiler CompCert [1], showing its usability

* Apply and evaluate the validator with the (affine) scheduler of Uday Bondhugula et

al's polyhedral compiler Pluto [2], showing its practicality

4[Validator Ji

f Polyhedral) scheduling f PonhedraI)

—> Output: “true”or “unknown”

[1 extraction
Loop

)

'L Model J 'L Model J

codegen { Loop J

Compilation correctness

* For compiler Comp, programs Ps and P: that Comp(Ps) = Some P: .
* If Pt refines Ps (written as P: C Ps), we say this compilation is correct.

* |t says, from the same beginning state, whenever Pt terminates at some
state, then Ps is able to stop at the same final state.

Compilation correctness

* For compiler Comp, programs Ps and P: that Comp(Ps) = Some P: .
* If Pt refines Ps (written as P: C Ps), we say this compilation is correct.

* |t says, from the same beginning state, whenever Pt terminates at some
state, then Ps is able to stop at the same final state.

* Two ways to guarantee correct compilation:
e Compiler proof: reasoning on Comp’s concrete definition to prove

\V/Ps.Pt. Comp(Ps) — Some Pt o Pt C PS.

 Verified validation: define a separate validator Validate and prove

VP, Pr. Validate(Ps, P;) = true = P, C Ps.

e And run Validate after each run of Comp.

Compilation correctness
Why not directly verify the scheduling algorithm?

- On the one hand, it contains complex heuristic with heavy
mathematics. Hard/Impractical/Uneconomical to verify.

- On the other hand, it has simple validation algorithm due to its simple
correctness criterion: not breaking dependence.

* Two ways to guarantee correct compilation:
e Compiler proof: reasoning on Comp’s concrete definition to prove

VPs, P:. Comp(Ps) = Some Py —> P C P..

 Verified validation: define a separate validator Validate and prove

VPs, P:. Validate(Ps, P:) = true = P C Ps.

e And run Validate after each run of Comp.

Implementation and Verification of the
Validator

* We define a validation function Validate that checks the violation of
dependences within the realm of polyhedral model, and mechanize
its correctness. All in Coq proof assistant.

* It is parametrized by instruction language to be reusable.

* Proof Goal: _y _
Definition (correctness of the validator)

Correct(Validate) = VPs,P;.Validate(Ps, P;) = true
— P: L Ps.
Vo, o'

=Pi,0 =0 = E=Ps,0=0".

[[>

Pe £ Ps

Our work:

Verified Validation for Polyhedral Scheduling

* Implement and verify a validator for (affine) scheduling in polyhedral compilation

* Apply to Xavier Leroy et al.'s verified compiler CompCert [1], showing its usability

* Apply and evaluate the validator with the (affine) scheduler of Uday Bondhugula et

al's polyhedral compiler Pluto [2], showing its practicality

4[Validator Ji

f Polyhedral) scheduling f PonhedraI)

—> Output: “true”or “unknown”

[1 extraction
Loop

)

'L Model J 'L Model J

codegen { Loop J

Case study: CompCert

ACM ACM

SIGPLAN
Software Programming

System Languages

Award Software
Award

 What is CompCert [1]? 2021

e A formally verified optimizing C compiler developed by Xavier Leroy et al.

* Not optimizing enough than industial compilers like Clang and GCC [3].
* Aggressive optimizations like polyhedral compilation could help!

* We successfully instantiate Validate (its implementation and proof)
with CompCert’s semantics model, showing the possibility towards a
fully verified polyhedral extension to CompCert.

Our work:

Verified Validation for Polyhedral Scheduling

* Implement and verify a validator for (affine) scheduling in polyhedral compilation

* Apply to Xavier Leroy et al.'s verified compiler CompCert [1], showing its usability

* Apply and evaluate the validator with the (affine) scheduler of Uday Bondhugula et

al's polyhedral compiler Pluto [2], showing its practicality

4[Validator Ji

f Polyhedral) scheduling f PonhedraI)

—> Output: “true”or “unknown”

[1 extraction
Loop

)

'L Model J 'L Model J

codegen { Loop J

Case study: Pluto

* Loop optimizers like polyhedral-based ones are error prone [4] | So
formal methods do help.

* We evaluate on Pluto [2], one of the famous polyhedral compiler.
e Pluto: ACM SIGPLAN PLDI Most Influential Paper award in 2018

: Compilable
Statement—wise targelscode
Dependence affine transformations _
pol;yhedra Updated domains (OpenMP
PLUTO and transformations parallel)
LooP :
Nested loop scanz_grfgaxser transformation Pc-lt}lrlléedral
sequences | dependence framework spectfier processhe X
tester

Figure from https://www.csa.iisc.ac.in/~udayb/publications/uday-thesis.pdf, Page 98

https://www.csa.iisc.ac.in/~udayb/publications/uday-thesis.pdf

Case study: Pluto

* Loop optimizers like polyhedral-based ones are error prone [4] | So
formal methods do help.

* We evaluate on Pluto [2], one of the famous polyhedral compiler.
e Pluto: ACM SIGPLAN PLDI Most Influential Paper award in 2018

: Compilable
Statement—wise

target code
D ﬂd AT TS TOTTITHT OIS . -W
Pil;; ES;E) Update:Ld nains (OpenMP

and transforndations arallgl
LooPo PLUTO P i :
Nested loop || ccanner/parser e T Polyhedral Syn. post gee/ice
+ p - - file - x|
fier processing /xle
sequences || dependence framework Spect
tester
Extraction Schaduling Codegen

Case study: Pluto

e Result shows the validator works well with Pluto, successfully verify
the affine scheduling of 62 test cases from Pluto's repository [5]

e Overhead is reasonable
e “unknown” is not reported

* Not only an academic prototype

Case si

e Result sh
the affin

* OQverh«
* “Unknc

* Not only

Test Time of Pluto (ms) Time of Validation (ms,ms) Result
covcol 35 434.6, 320.7 EQ
dsyr2k 2.6 106.0, 83.4 EQ
fdtd-2d 46.4 1615.5, 1296.3 EQ
gemver 7.0 247.9, 240.4 EQ

lu 6.1 410.6, 331.2 EQ
mvt 2.2 70.2, 56.3 EQ
ssymm 40.7 726.0, 551.2 EQ
tce 568.6 4442.0, 4422.5 EQ
adi 77.5 2531.7, 2377.8 EQ
corcol 5.5 4425, 362.1 EQ
dct 21.8 879.4, 739.4 EQ
dsyrk 1.8 96.8, 78.9 EQ
floyd 12.1 502.6, 421.7 EQ
jacobi-1d-imper 3.8 184.0, 167.8 EQ
matmul-init 2.9 257.8, 192.4 EQ
pca 202.5 2923.6, 2679.5 EQ
strmm 1.9 141.4, 110.8 EQ
tmm 1.6 109.7, 89.6 EQ
advect3d 1023.1 579.1, 498.1 EQ
corcol3 13.6 851.3, 733.4 EQ
doitgen 10.4 1069.2, 837.4 EQ
fdtd-1d 6.0 268.7, 229.9 EQ
jacobi-2d-imper 17.7 619.5, 543.5 EQ
matmul 3.2 157.1, 1255 EQ
seidel 24.5 818.1, 725.5 EQ
strsm 6.4 209.3, 161.2 EQ
trisolv 5.1 338.9, 248.8 EQ
ldloop-invar 0.3 6.7, 6.0 EQ
costfunc 0.8 47.4, 35.0 EQ
fusionl 0.9 15.3, 13.9 EQ
Table 1: Evaluation results on Pluto’s test suits

ly verify
/ [5]

Thank youl!

Our work:

Verified Validation for Polyhedral Scheduling

* Implement and verify a validator for (affine) scheduling in polyhedral compilation

* Apply to Xavier Leroy et al.'s verified compiler CompCert [1], showing its usability

* Apply and evaluate the validator with the (affine) scheduler of Uday Bondhugula et

al's polyhedral compiler Pluto [2], showing its practicality

4[Validator Ji

f PO'VhEdraIW scheduling f PonhedraI)

—> Output: “true”or “unknown”

[1 extraction
Loop

)

'L Model J 'L Model J

codegen { Loop J

Open source at https://github.com/verif-scop/PolCert/

Reference

[18. Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52,
7 (July 2009), 107-115.

[2]. Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A
practical automatic polyhedral parallelizer and locality optimizer. In Proceedings of
the 29th ACM SIGPLAN Conference on Programming Language Design and
{Jrrgzlelngﬁnaalt;on (PLDI '08). Association for Computing Machinery, New York, NY,

[3]. Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and
Alexandre Bérard. 2023. Formally Verifying Optimizations with Block Simulations.
Proc. ACM Program. Lang. 7, OOPSLA?2, Article 224 (October 2023), 30 pages.

[4]. Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2023. Fuzzing Loop
Optimizations in Compilers for C++ and Data-Parallel Languages. Proc. ACM
Program. Lang. 7, PLDI, Article 181 (June 2023), 22 pages.

[5]. Uday Bondhugula. https://github.com/bondhugula/pluto/.

Original code 7., for covariance matrix calculation, 1.84s

for (j1 =1;j1 <= M; j1++) {
for (j2 = j1; j2 <= M; j2++) {
for i=1;i <= N; i++) {
} Io: symmat[j1][j2] += datali][j1] * data[i][;2];

I;: symmat[j2][j1] = symmat[j1][;2];

0 ~N o g A& WO =

rL,, for covariance matrix calculation, 0.43s, with loop
distribution and loop interchange

Optimized code 7!

for i=1;i <= N;i++){
for (j1=1;j1 <=M, j1++) {
for (j2 = j1; j2 <= M; j2++) {
} symmat[j1][j2] += datali][j1] * data[i][}2];

}
}
for (j1 = 1; j1 <= M; ji++) {
for (j2 = j1; j2 <= M; j2++) {
symmat[j2][j1] = symmat[j1][j2];

O W N A W N e

1

M=N=1500 1 \ }

o

See at https://github.com/verif-scop/speed-up.

Polyhedral compilation does high-level structural tranformations
and only impose a few properties of the underlying instruction
language (called). The validation function given in this work is
parameterized by I.

I allows user define the syntax, types, state, semantics of the
language, how it initializes, and its the non-alias proposition. It
demands user to provide a verified Checker function to validate the
consistency between the read and write access function and an
Instruction’s semantics, and prove that any two instances that
satisfy Bernstein's conditions are permutable.

Module Type [£

¢

We assy
Me Plyto Si
ns i
T,1,S: Type Hction 'anguage sat

= 1 — List(Z) — Memory Cells 'sty this bstra

— Memory Cells —+ S — S — Prop
Compat : List(Ildentifier) — S — Prop

Consistent : List(Identifier x T) — List(Z) — S — Prop
NonAlias : S — Prop
NonAliasPsrv :

VI, o,0’. NonAlias(c) A p = 1,0 —— o’ = NonAlias(c”’).

Checker : | — Access Functions
— Access Functions — Bool
Correct(Checker) :

VI, W, R.Checker(I, W, R) = true
— (Vo,6”, p,Ar, By. plET, 6 202W o1 s AL CR(P) A Ay C W(P)).
BCPermut :

VIls 129 P1:P2. 0, 0’9 G/,a Ar, AWa A,’ A,

A, A A/AI
(p1|211,o——r—w—>c7'/\p2|212,0 — W,y
/\A,mA:vz(/)/\A NA, =0AAy NAL = 0)

ALA AriBw. 11
=3 Ho pztzlz,a——>a ANpy EIr,of ———— o

Figure 1: Definition of Instruction Language Module 1

Case study: Towards verified polyhedral compilation for

CompCert

We instantiate the validation function with CompCert C's type,
state and subset of its instruction language, and implement Checker
with symbolic execution. All verified. Only differences are, affine
expression is evaluated in Z (no overflow), and multi-dimensional
array access is sugarized.

(Base Type)

(Type)

(Value)

(Iterator)

(Unop)

(Binop)

(May Affine Expression)

(Access Expression)

(Expression)
(Base Instruction)

i
-
%

]
op;

I m

M

int32s

Base Type x List(Z)

132(n) | -

N

- ...

+ || ;.0

z|i|lopye|e1op; e
Identifier x Base Type

x List(May Affine Expression)
v|ile|op,ele op,e
skip | e:=e

Future work

* Complete verified polyhedral compilation.
* Verified extractor.
* Engineering in CompCert’s driver & frontend.
* Apply optimistic approach8 to deal with polyhedral model's heavy
assumptions, like integer overflow”.
e Support validation for other polyhedral transformations, like index set
split (as a pre-phrase), tiling (as a post-phrase), layout transformation
(as an orthogonal phrase).

e Support vectorization, parallelization, GPU compilation ...

