
Verified Validation for Affine
Scheduling in Polyhedral

Compilation

Xuyang Li, Hongjin Liang, Xinyu Feng

Nanjing University

Background

• Performance of modern software relies on compiler optimizations

• Nested loops are optimization targets due to its heavy numerical
computation, like in scientific computing and machine learning

• Optimization Goals
• Enhance locality of memory access

• Increase program parallelism

for i in [1, N]:

S: A[i] = B[i-1] + C[i+1]

parallel for i in [1, N]:

S: A[i] = B[i-1] + C[i+1]

（Suppose arrays A, B, C are non-aliasing）

Background

• For nested loops with complex memory access pattern, loop
transformations are needed to achieve better optimization
• Like loop fusion, interchange, skewing, etc...

• We reason the dependences of instruction(s)'s iterations for such
transformation's correctness, according to the memory access
expression

for i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j] + A[i-1][j-1]

Is the loop parallelizable?

Example

for i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j] + A[i-1][j-1]

Iteration

Execution Order

Unroll each iteration of the instruction(s)
into a coordinate system with the loop
variables as the axis.

Iteration

Execution Order

Dependence

Example

for i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j] + A[i-1][j-1]

Write after Read (WAR) dependence:
iteration (i, j) reads A[i+1][j], iteration (i+1,
j) writes A[i+1][j]. Not permutable!

Example

Iteration

Execution Order

Dependencefor i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j] + A[i-1][j-1]

Read after Write (RAW) dependence：
iteration (i,j) writes A[i][j], iteration
(i+1,j+1) reads A[i][j]. Not permutable!

Iteration

Execution Order

Dependence

Example

for i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j] + A[i-1][j-1]

Old execution order is now useless.
Only dependences matter.

Is the loop parallelizable?
Without breaking dependences?

Example

Iteration

Execution Order

Dependencefor i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j] + A[i-1][j-1]

Example

Iteration

Execution Order

Dependence

Is the loop parallelizable?
Without breaking dependences?
- for iterations with same j

- no due to inner dependences
- other possibilities?

for i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j] + A[i-1][j-1]

Example

Iteration

Execution Order

Dependencefor i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j] + A[i-1][j-1]

Is the loop parallelizable?
Without breaking dependences?
- for iterations with same j

- no due to inner dependences
- other possibilities?

- iterations with same i+j

Now we can determine a new
execution order, not breaking
dependences

Example

Iteration

Execution Order

Dependencefor i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j] + A[i-1][j-1]

And we can regenerate a new nested
loop respecting new execution order,
whose inner loop is parallelizable.

for j’ in [1, 2*N-1]:

for i’ in [max(1, j’-N+1),

min(N-1, j’-1)]:

S: A[i’][(j’-i’)] = A[i’+1][(j’-i’)]

+ A[i’-1][(j’-i’)-1]

Example

Iteration

Execution Order

Dependence

for i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j]

+ A[i-1][j-1]

for j’ in [1, 2*N-1]:

for i’ in [max(1, j’-N+1),

min(N-1, j’-1)]:

S: A[i’][(j’-i’)] = A[i’+1][(j’-i’)]

+ A[i’-1][(j’-i’)-1]

loop skewing + loop interchange

Example

Polyhedral Model

for i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j]

+ A[i-1][j-1]

for j’ in [1, 2*N-1]:

for i’ in [max(1, j’-N+1),

min(N-1, j’-1)]:

S: A[i’][(j’-i’)] = A[i’+1][(j’-i’)]

+ A[i’-1][(j’-i’)-1]

loop skewing + loop interchange

Polyhedral Model

for i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j]

+ A[i-1][j-1]

Iteration
– Domain – “Polyhedron”
Execution order
– Schedule
Dependence

for j’ in [1, 2*N-1]:

for i’ in [max(1, j’-N+1),

min(N-1, j’-1)]:

S: A[i’][(j’-i’)] = A[i’+1][(j’-i’)]

+ A[i’-1][(j’-i’)-1]

loop skewing + loop interchange

Polyhedral Compilation

for i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j]

+ A[i-1][j-1]

Extraction
Code
Generation

for j’ in [1, 2*N-1]:

for i’ in [max(1, j’-N+1),

min(N-1, j’-1)]:

S: A[i’][(j’-i’)] = A[i’+1][(j’-i’)]

+ A[i’-1][(j’-i’)-1]

Scheduling

Polyhedral Compilation

Loop
Polyhedral

Model
Polyhedral

Model
Loop

scheduling codegenextraction

Our work:
Verified Validation for Polyhedral Scheduling

• Implement and verify a validator for (affine) scheduling in polyhedral compilation

• Apply to Xavier Leroy et al.'s verified compiler CompCert [1], showing its usability

• Apply and evaluate the validator with the (affine) scheduler of Uday Bondhugula et
al's polyhedral compiler Pluto [2], showing its practicality

Validator

Output: “true”or “unknown”

Loop
Polyhedral

Model
Polyhedral

Model
Loop

scheduling codegenextraction

Our work:
Verified Validation for Polyhedral Scheduling

• Implement and verify a validator for (affine) scheduling in polyhedral compilation

• Apply to Xavier Leroy et al.'s verified compiler CompCert [1], showing its usability

• Apply and evaluate the validator with the (affine) scheduler of Uday Bondhugula et
al's polyhedral compiler Pluto [2], showing its practicality

Validator

Output: “true”or “unknown”

Loop
Polyhedral

Model
Polyhedral

Model
Loop

scheduling codegenextraction

Compilation correctness

• For compiler Comp, programs and that Comp() = Some .

• If refines (written as), we say this compilation is correct.
• It says, from the same beginning state, whenever terminates at some

state, then is able to stop at the same final state.

Compilation correctness

• For compiler Comp, programs and that Comp() = Some .

• If refines (written as), we say this compilation is correct.
• It says, from the same beginning state, whenever terminates at some

state, then is able to stop at the same final state.

• Two ways to guarantee correct compilation:
• Compiler proof: reasoning on Comp’s concrete definition to prove

• Verified validation: define a separate validator Validate and prove

• And run Validate after each run of Comp.

Compilation correctness

• For compiler Comp, programs and that Comp() = Some .

• If refines (written as), we say this compilation is correct.
• It says, from the same beginning state, whenever terminates at some

state, then is able to stop at the same final state.

• Two ways to guarantee correct compilation:
• Compiler proof: reasoning on Comp’s concrete definition to prove

• Verified validation: define a separate validator Validate and prove

• And run Validate after each run of Comp.

- On the one hand, it contains complex heuristic with heavy
mathematics. Hard/Impractical/Uneconomical to verify.

- On the other hand, it has simple validation algorithm due to its simple
correctness criterion: not breaking dependence.

Why not directly verify the scheduling algorithm?

Implementation and Verification of the
Validator
• We define a validation function Validate that checks the violation of

dependences within the realm of polyhedral model, and mechanize
its correctness. All in Coq proof assistant.

• It is parametrized by instruction language to be reusable.

• Proof Goal:

Our work:
Verified Validation for Polyhedral Scheduling

• Implement and verify a validator for (affine) scheduling in polyhedral compilation

• Apply to Xavier Leroy et al.'s verified compiler CompCert [1], showing its usability

• Apply and evaluate the validator with the (affine) scheduler of Uday Bondhugula et
al's polyhedral compiler Pluto [2], showing its practicality

Validator

Output: “true”or “unknown”

Loop
Polyhedral

Model
Polyhedral

Model
Loop

scheduling codegenextraction

Case study: CompCert

• What is CompCert [1]?
• A formally verified optimizing C compiler developed by Xavier Leroy et al.

• Not optimizing enough than industial compilers like Clang and GCC [3].
• Aggressive optimizations like polyhedral compilation could help!

• We successfully instantiate Validate (its implementation and proof)
with CompCert’s semantics model, showing the possibility towards a
fully verified polyhedral extension to CompCert.

Our work:
Verified Validation for Polyhedral Scheduling

• Implement and verify a validator for (affine) scheduling in polyhedral compilation

• Apply to Xavier Leroy et al.'s verified compiler CompCert [1], showing its usability

• Apply and evaluate the validator with the (affine) scheduler of Uday Bondhugula et
al's polyhedral compiler Pluto [2], showing its practicality

Validator

Output: “true”or “unknown”

Loop
Polyhedral

Model
Polyhedral

Model
Loop

scheduling codegenextraction

Case study: Pluto

• Loop optimizers like polyhedral-based ones are error prone [4] ! So
formal methods do help.

• We evaluate on Pluto [2], one of the famous polyhedral compiler.
• Pluto: ACM SIGPLAN PLDI Most Influential Paper award in 2018

Figure from https://www.csa.iisc.ac.in/~udayb/publications/uday-thesis.pdf, Page 98

https://www.csa.iisc.ac.in/~udayb/publications/uday-thesis.pdf

Case study: Pluto

• Loop optimizers like polyhedral-based ones are error prone [4] ! So
formal methods do help.

• We evaluate on Pluto [2], one of the famous polyhedral compiler.
• Pluto: ACM SIGPLAN PLDI Most Influential Paper award in 2018

Extraction Codegen

Validator

Scheduling

Case study: Pluto

• Result shows the validator works well with Pluto, successfully verify
the affine scheduling of 62 test cases from Pluto's repository [5]
• Overhead is reasonable

• “unknown” is not reported

• Not only an academic prototype

Case study: Pluto

• Result shows the validator works well with Pluto, successfully verify
the affine scheduling of 62 test cases from Pluto's repository [5]
• Overhead is reasonable

• “unknown” is not reported

• Not only an academic prototype

Thank you!

Our work:
Verified Validation for Polyhedral Scheduling

• Implement and verify a validator for (affine) scheduling in polyhedral compilation

• Apply to Xavier Leroy et al.'s verified compiler CompCert [1], showing its usability

• Apply and evaluate the validator with the (affine) scheduler of Uday Bondhugula et
al's polyhedral compiler Pluto [2], showing its practicality

Validator

Output: “true”or “unknown”

Loop
Polyhedral

Model
Polyhedral

Model
Loop

scheduling codegenextraction

Open source at https://github.com/verif-scop/PolCert/

Reference

[1]. Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52,
7 (July 2009), 107–115.

[2]. Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A
practical automatic polyhedral parallelizer and locality optimizer. In Proceedings of
the 29th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI '08). Association for Computing Machinery, New York, NY,
USA, 101–113.

[3]. Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and
Alexandre Bérard. 2023. Formally Verifying Optimizations with Block Simulations.
Proc. ACM Program. Lang. 7, OOPSLA2, Article 224 (October 2023), 30 pages.

[4]. Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2023. Fuzzing Loop
Optimizations in Compilers for C++ and Data-Parallel Languages. Proc. ACM
Program. Lang. 7, PLDI, Article 181 (June 2023), 22 pages.

[5]. Uday Bondhugula. https://github.com/bondhugula/pluto/.

See at https://github.com/verif-scop/speed-up.

M=N=1500

Future work

• Complete verified polyhedral compilation.
• Verified extractor.

• Engineering in CompCert’s driver & frontend.

• Apply optimistic approach8 to deal with polyhedral model's heavy
assumptions, like integer overflow9.

• Support validation for other polyhedral transformations, like index set
split (as a pre-phrase), tiling (as a post-phrase), layout transformation
(as an orthogonal phrase).

• Support vectorization, parallelization, GPU compilation …

8 https://dl.acm.org/doi/10.5555/3049832.3049864
9 https://inria.hal.science/hal-00655485

