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Background

• Performance of modern software relies on compiler optimizations

• Nested loops are optimization targets due to its heavy numerical 
computation, like in scientific computing and machine learning

• Optimization Goals
• Enhance locality of memory access

• Increase program parallelism

for i in [1, N]:

S:  A[i] = B[i-1] + C[i+1]

parallel for i in [1, N]:

S:  A[i] = B[i-1] + C[i+1]

（Suppose arrays A, B, C are non-aliasing）



Background

• For nested loops with complex memory access pattern, loop 
transformations are needed to achieve better optimization
• Like loop fusion, interchange, skewing, etc...

• We reason the dependences of instruction(s)'s iterations for such 
transformation's correctness, according to the memory access 
expression

for i in [1, N]:

for j in [1, N]:

S:  A[i][j] = A[i+1][j] + A[i-1][j-1]

Is the loop parallelizable?



Example

for i in [1, N]:

for j in [1, N]:

S:  A[i][j] = A[i+1][j] + A[i-1][j-1]

Iteration

Execution Order

Unroll each iteration of the instruction(s)
into a coordinate system with the loop 
variables as the axis.



Iteration

Execution Order

Dependence

Example

for i in [1, N]:

for j in [1, N]:

S:  A[i][j] = A[i+1][j] + A[i-1][j-1]

Write after Read (WAR) dependence: 
iteration (i, j) reads A[i+1][j], iteration (i+1, 
j) writes A[i+1][j]. Not permutable!



Example

Iteration

Execution Order

Dependencefor i in [1, N]:

for j in [1, N]:

S:  A[i][j] = A[i+1][j] + A[i-1][j-1]

Read after Write (RAW) dependence：
iteration (i,j) writes A[i][j], iteration 
(i+1,j+1) reads A[i][j]. Not permutable!



Iteration

Execution Order

Dependence

Example

for i in [1, N]:

for j in [1, N]:

S:  A[i][j] = A[i+1][j] + A[i-1][j-1]

Old execution order is now useless.
Only dependences matter.



Is the loop parallelizable?
Without breaking dependences?

Example
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for j in [1, N]:

S:  A[i][j] = A[i+1][j] + A[i-1][j-1]



Example

Iteration

Execution Order

Dependence

Is the loop parallelizable?
Without breaking dependences?
- for iterations with same j

- no due to inner dependences
- other possibilities?

for i in [1, N]:

for j in [1, N]:

S:  A[i][j] = A[i+1][j] + A[i-1][j-1]



Example

Iteration

Execution Order

Dependencefor i in [1, N]:

for j in [1, N]:

S:  A[i][j] = A[i+1][j] + A[i-1][j-1]

Is the loop parallelizable?
Without breaking dependences?
- for iterations with same j

- no due to inner dependences
- other possibilities?

- iterations with same i+j



Now we can determine a new 
execution order, not breaking 
dependences

Example

Iteration

Execution Order

Dependencefor i in [1, N]:

for j in [1, N]:

S:  A[i][j] = A[i+1][j] + A[i-1][j-1]



And we can regenerate a new nested 
loop respecting new execution order,
whose inner loop is parallelizable.

for j’ in [1, 2*N-1]:

for i’ in [max(1, j’-N+1), 

min(N-1, j’-1)]:

S:  A[i’][(j’-i’)] = A[i’+1][(j’-i’)] 

+ A[i’-1][(j’-i’)-1]

Example

Iteration

Execution Order

Dependence



for i in [1, N]:

for j in [1, N]:

S:  A[i][j] = A[i+1][j] 

+ A[i-1][j-1]

for j’ in [1, 2*N-1]:

for i’ in [max(1, j’-N+1), 

min(N-1, j’-1)]:

S:  A[i’][(j’-i’)] = A[i’+1][(j’-i’)] 

+ A[i’-1][(j’-i’)-1]

loop skewing + loop interchange

Example



Polyhedral Model

for i in [1, N]:

for j in [1, N]:

S:  A[i][j] = A[i+1][j] 

+ A[i-1][j-1]

for j’ in [1, 2*N-1]:

for i’ in [max(1, j’-N+1), 

min(N-1, j’-1)]:

S:  A[i’][(j’-i’)] = A[i’+1][(j’-i’)] 

+ A[i’-1][(j’-i’)-1]

loop skewing + loop interchange



Polyhedral Model

for i in [1, N]:

for j in [1, N]:

S:  A[i][j] = A[i+1][j] 

+ A[i-1][j-1]

Iteration
– Domain – “Polyhedron”
Execution order
– Schedule
Dependence

for j’ in [1, 2*N-1]:

for i’ in [max(1, j’-N+1), 

min(N-1, j’-1)]:

S:  A[i’][(j’-i’)] = A[i’+1][(j’-i’)] 

+ A[i’-1][(j’-i’)-1]

loop skewing + loop interchange



Polyhedral Compilation

for i in [1, N]:

for j in [1, N]:

S:  A[i][j] = A[i+1][j] 

+ A[i-1][j-1]

Extraction
Code 
Generation

for j’ in [1, 2*N-1]:

for i’ in [max(1, j’-N+1), 

min(N-1, j’-1)]:

S:  A[i’][(j’-i’)] = A[i’+1][(j’-i’)] 

+ A[i’-1][(j’-i’)-1]

Scheduling



Polyhedral Compilation
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Our work:
Verified Validation for Polyhedral Scheduling

• Implement and verify a validator for (affine) scheduling in polyhedral compilation

• Apply to Xavier Leroy et al.'s verified compiler CompCert [1], showing its usability

• Apply and evaluate the validator with the (affine) scheduler of Uday Bondhugula et 
al's polyhedral compiler Pluto [2], showing its practicality

Validator

Output: “true”or “unknown”
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Compilation correctness

• For compiler Comp, programs        and       that Comp(      ) = Some     .  

• If       refines (written as              ), we say this compilation is correct.
• It says, from the same beginning state, whenever          terminates at some 

state, then          is able to stop at the same final state.



Compilation correctness

• For compiler Comp, programs        and       that Comp(      ) = Some     .  

• If       refines (written as              ), we say this compilation is correct.
• It says, from the same beginning state, whenever          terminates at some 

state, then          is able to stop at the same final state.

• Two ways to guarantee correct compilation:
• Compiler proof: reasoning on Comp’s concrete definition to prove

• Verified validation: define a separate validator Validate and prove

• And run Validate after each run of Comp.



Compilation correctness

• For compiler Comp, programs        and       that Comp(      ) = Some     .  

• If       refines (written as              ), we say this compilation is correct.
• It says, from the same beginning state, whenever          terminates at some 

state, then          is able to stop at the same final state.

• Two ways to guarantee correct compilation:
• Compiler proof: reasoning on Comp’s concrete definition to prove

• Verified validation: define a separate validator Validate and prove

• And run Validate after each run of Comp.

- On the one hand, it contains complex heuristic with heavy 
mathematics. Hard/Impractical/Uneconomical to verify.

- On the other hand, it has simple validation algorithm due to its simple 
correctness criterion: not breaking dependence.

Why not directly verify the scheduling algorithm?



Implementation and Verification of the 
Validator
• We define a validation function Validate that checks the violation of 

dependences within the realm of polyhedral model, and mechanize 
its correctness. All in Coq proof assistant.

• It is parametrized by instruction language to be reusable.

• Proof Goal:



Our work:
Verified Validation for Polyhedral Scheduling

• Implement and verify a validator for (affine) scheduling in polyhedral compilation

• Apply to Xavier Leroy et al.'s verified compiler CompCert [1], showing its usability
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Case study: CompCert

• What is CompCert [1]? 
• A formally verified optimizing C compiler developed by Xavier Leroy et al.

• Not optimizing enough than industial compilers like Clang and GCC [3].
• Aggressive optimizations like polyhedral compilation could help!

• We successfully instantiate Validate (its implementation and proof)
with CompCert’s semantics model, showing the possibility towards a 
fully verified polyhedral extension to CompCert.
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Case study: Pluto

• Loop optimizers like polyhedral-based ones are error prone [4] ! So 
formal methods do help.

• We evaluate on Pluto [2], one of the famous polyhedral compiler.
• Pluto: ACM SIGPLAN PLDI Most Influential Paper award in 2018

Figure from https://www.csa.iisc.ac.in/~udayb/publications/uday-thesis.pdf, Page 98

https://www.csa.iisc.ac.in/~udayb/publications/uday-thesis.pdf


Case study: Pluto

• Loop optimizers like polyhedral-based ones are error prone [4] ! So 
formal methods do help.

• We evaluate on Pluto [2], one of the famous polyhedral compiler.
• Pluto: ACM SIGPLAN PLDI Most Influential Paper award in 2018

Extraction Codegen
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Scheduling



Case study: Pluto

• Result shows the validator works well with Pluto, successfully verify 
the affine scheduling of 62 test cases from Pluto's repository [5]
• Overhead is reasonable

• “unknown” is not reported

• Not only an academic prototype



Case study: Pluto

• Result shows the validator works well with Pluto, successfully verify 
the affine scheduling of 62 test cases from Pluto's repository [5]
• Overhead is reasonable

• “unknown” is not reported

• Not only an academic prototype



Thank you!



Our work:
Verified Validation for Polyhedral Scheduling

• Implement and verify a validator for (affine) scheduling in polyhedral compilation

• Apply to Xavier Leroy et al.'s verified compiler CompCert [1], showing its usability

• Apply and evaluate the validator with the (affine) scheduler of Uday Bondhugula et 
al's polyhedral compiler Pluto [2], showing its practicality
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Open source at https://github.com/verif-scop/PolCert/
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See at https://github.com/verif-scop/speed-up.

M=N=1500









Future work

• Complete verified polyhedral compilation.
• Verified extractor.

• Engineering in CompCert’s driver & frontend.

• Apply optimistic approach8 to deal with polyhedral model's heavy 
assumptions, like integer overflow9.    

• Support validation for other polyhedral transformations, like index set 
split (as a pre-phrase), tiling (as a post-phrase), layout transformation 
(as an orthogonal phrase). 

• Support vectorization, parallelization, GPU compilation …

8 https://dl.acm.org/doi/10.5555/3049832.3049864
9 https://inria.hal.science/hal-00655485


