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Background

* Human needs highly optimized compilation techniques for modern
software.

* Nested loops are optimization targets due to its heavy numerical
computation.

* Common loop optimizations:

* Apply combination of loop fusion, distribution, interchange, skewing, reverse,
tiling, ..., to improve memory locality and/or parallelizability.
e May further apply vectorization (SIMD) and parallelization (openmp primitives).

* Map it automatically to domain-specific hardware like GPU.



Background

* To do such loop transformations, we need to analyze dependences
between instructions of different iterations.

for 1 in [1, NJ: Can we it?
for 3 in [1, N]J:
S: A[1][J] = A[1i+1]([3] + A[1-1][J-1]
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Example

for i in [1, NJ:
for 3 in [1, N]:
S: A[i1][J] = A[i+1]([7]
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Example

for 1 in [1, N]J:

for j in [1, NJ: 5
S: A[i][J] = A[1+1][3J] + A[1-1][3-1]
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4 Iterations
for 1 in [1, N]J:
for 3 in [1, N]: —2
S: A[1][3] = A[1+1][]3] + A[1-1][]J-1]
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Example

Can we it? 5

Respecting dependences?

for 1 in [1, N]J:
for 3 in [1, N]: )

S: A[1][J] = A[i+1][3] + A[1-1][J-1]
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Example .

]
Can we it? 5
Respecting dependences?
- Not along j. There is inner dependence. —H
- What about other axis? ;

for 1 in [1, N]J:
for 3 in [1, N]: —2
S: A[i][3] = A[1+1][7J] + A[1-1][7-1]
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Example .

]
Can we it? 5
Respecting dependences?
- Not along j. There is inner dependence. —H
- What about other axis? ;

] N H H .+II
for i in [1, NJ: Iteration with samei + j is

for 3 in [1, N]: —2
S: A[1][J] = A[1+1][J] + A[1-1][J-1]

) AN
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Now we may find new execution order.-4

(Without breaking dependences)

for 1 in [1, N]J:

for 3 in [1, N]: _ o]

S: A[1][J] = A[i+1][3] + A[1-1][J-1]
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Example ‘

w

Now we generate a new nested loop ~*

respecting new execution order. 3]

for 3’ in [1, 2*N-1]: —2
for i’ in [max(1l, j’-N+1),

min(N-1, j’-1)1]:
S: A[1"][(3"'=-1")] = A[1"+1][(

N—"
| N}
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for 37 in [1, 2*N-1]:

for i in [1, N]: for i’ in [max(l, j’-N+1),

for j in [1, NJ: i
N-1, -1
S: A[1][]J] = A[1+1][]] S . A[i’][(j’Ti?;] = A?l'+i%
+ A[1-11[3-1] ' + A[1i’-1]

loop skewing + loop interchange



Qolyhedral Model

for 37 1in [1, 2*N-1]:
for 1’ in [max(1l, j’-N+1),
min(N-1, j’-1)]:
S: A[1"][(3"-1")] = A[1"+1]
+ A[1"-1]

for i in [1, NJ:
for 3 in [1, NJ:
S: A[1][3J] = A[i+1][7]
+ A[1-1]1[7-1]

loop skewing + loop interchange



Qolyhedral Model

for 1 in [1,
for jJ in [1,

S:

Al1]117]

N]J:

N]J:
Ali+1][7]
+ A[1-1]1[7-1]

S: A[1"]1[(§"-1")]

loop skewing + loop interchange

Iterations — Domain — “The Polyhedron”
Execution order - Schedule

Dependence

for 37 1in [1, 2*N-1]:
for i’ in [max(1,
min(N-1, j’-1)

j’'-N+1),

]:
= A[l’+l][(
+ A[1"-1]



Polyhedral Compilation
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for 37 1in [1, 2*N-1]:

for i i 1, NJ:
i in [ ] for i’ in [max(l, j’-N+1),

for 3 in [1, N]: min (N-1, -1)]:
S: AT = AL+LIID] St A[i’]1[(3'-i")] = A?l'+1]
+ A[1-1] [j_l] . + A[i’-1]
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Polyhedral Compilation

f Polyhedralw scheduling f Polyhedral

Nested ) extraction
Loop J

Our focus!

'L Model J 'L Model
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codegen |
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Loop
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Scheduling can be done manually or by automatic algorithms, like Pluto".
We want to ensure its correctness.

! https://pluto-compiler.sourceforge.net/



Compilation correctness

* For compiler Comp, programs Ps and P: that Comp( Ps) = Some P: .
* If Pt refines Ps (written as P: C Ps ), we say this compilation is correct.

* |t says, from the same beginning state, whenever Pt terminates at some
state, then Ps is able to stop at the same final state.




Compilation correctness

* For compiler Comp, programs Ps and P: that Comp( Ps) = Some P: .
* If Pt refines Ps (written as P: C Ps ), we say this compilation is correct.

* |t says, from the same beginning state, whenever Pt terminates at some
state, then Ps is able to stop at the same final state.

* Two ways to guarantee correct compilation:
* Compiler proof: reasoning on Comp’s concrete definition to prove

\V/Ps.Pt. Comp(Ps) — Some Pt o Pt C PS.

 Verified validation: define a separate validator Validate and prove

VP, Pr. Validate(Ps, P;) = true = P, C Ps.

e And run Validate after each run of Comp.



Compilation correctness
Why not directly verify the scheduling algorithm?

- On the one hand, it contains complex heuristic with heavy
mathematics. Hard/Impractical to verify.

- On the other hand, it has simple validation algorithm due to its simple
correctness criterion: not breaking dependence. (Also called Bernstein’s Condition”.)

* Two ways to guarantee correct compilation:
* Compiler proof: reasoning on Comp’s concrete definition to prove

VPs, P:. Comp(Ps) = Some Py —> P C P..

 Verified validation: define a separate validator Validate and prove

VPs, P:. Validate(Ps, P:) = true = P C Ps.

e And run Validate after each run of Comp.

2 https://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4 521



Validating Polyhedral Scheduling
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4[ Validlation ]i

Output: true or false(unknown).



Our work:
Verified Validation for Polyhedral Scheduling

 We implement and verify a general validation function Validate for
polyhedral scheduling in Coq proof assistant from scratch. It is
parameterized by instruction language.

* We instantiate Validate with a variant of CompCert's instruction
language, showing its practicality.

* We adapt Validate so that it works with the Pluto compiler. It
successfully validates all its available test cases with reasonable
overhead.



General Verified Validation function
for Polyhedral Scheduling

* We define a validation function Validate that checks Bernstein's
condition within polyhedral model, and mechanized its correctness
with the Coq proof assistant.

* It is parametrized by instruction language to be reusable.
* Qur top lemma

Definition (correctness of the validator)

Correct(Validate) = VPs,P;.Validate(Ps, P;) = true
— P: L Ps.
P, CPs = Vo,o
= Pi,0 =0 — EPs,0=0".



Case study on CompCert

ACM ( ACM
SIGPLAN
Software ] Programming
System 1_ Languages
3 ‘ Award \ Software
. \ Award
* What is CompCert™? N, 2021 Wy 2022

* a high-assurance compiler for almost all of thé C Ianguage (ISO. C 2011),
generating efficient code for the ARM, PowerPC, RISC-V and x86 processors.

* Itis not enough optimized4 than production compiler like clang and gcc. So
aggressive optimizers like polyhedral-based ones do help!

* We successfully instantiate Validate with CompCert’s semantics
model, showing the possibility towards a fully verified polyhedral
extension to CompCert.

: https://compcert.org/
*https://doi.org/10.1145/3622799



Case study on Pluto compiler

* Loop optimizers like polyhedral-based ones are error prone5 indeed!
So formal methods do help.

* We evaluate on Pluto, one of the famous polyhedral compiler.
e Pluto: ACM SIGPLAN PLDI Most Influential Paper award in 2018

: Compilable
Statement—wise targelscode
Dependence affine transformations _
pol;yhedra Updated domains (OpenMP
PLUTO and transformations parallel)
LooP :
Nested loop scang_igr.-";arser transformation Pﬂlt}liléedIal
: o /xle
sequences | dependence framework spectfier processhe
tester

Figure from https://www.csa.iisc.ac.in/~udayb/publications/uday-thesis.pdf, Page 98

> https://doi.org/10.1145/3591295
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Case study on Pluto compiler

* Loop optimizers like polyhedral-based ones are error prone5 indeed!
So formal methods do help.

* We evaluate on Pluto, one of the famous polyhedral compiler.
e Pluto: ACM SIGPLAN PLDI Most Influential Paper award in 2018
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Case study on Pluto compiler

* Loop optimizers like polyhedral-based ones are error prone5 indeed!
So formal methods do help.

* We evaluate on Pluto, one of the famous polyhedral compiler.
* Pluto: ACM SIGPLAN PLDI Most Influential Paper award in 2018

* Work and work well with Pluto compiler: successfully validate its all 62
available test cases.
e Not just a research prototype: work as an executable on practical polyhedral
compiler.

* Soundness v.s. completeness:

* Formal verification proves the algorithm soundness: guarantee refinement whenever it
outputs true.

* The evaluation shows validation’s algorithm completeness: if refinement establishes on
inputs, the algorithm tries its best to output true rather than unknown!

e Also, the algorithm has reasonable overhead.

> https://doi.org/10.1145/3591295
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Test Time of Pluto (ms) Time of Validation (ms,ms) Result
covcol 35 434.6, 320.7 EQ
dsyr2k 2.6 106.0, 83.4 EQ
fdtd-2d 46.4 1615.5, 1296.3 EQ
gemver 7.0 247.9, 240.4 EQ

lu 6.1 410.6, 331.2 EQ
mvt 2.2 70.2, 56.3 EQ
ssymm 40.7 726.0, 551.2 EQ
tce 568.6 4442.0, 4422.5 EQ
adi 77.5 2531.7, 2377.8 EQ
corcol 5.5 4425, 362.1 EQ
dct 21.8 879.4, 739.4 EQ
dsyrk 1.8 96.8, 78.9 EQ
floyd 12.1 502.6, 421.7 EQ
jacobi-1d-imper 3.8 184.0, 167.8 EQ
matmul-init 2.9 257.8, 192.4 EQ
pca 202.5 2923.6, 2679.5 EQ
strmm 1.9 141.4, 110.8 EQ
tmm 1.6 109.7, 89.6 EQ
advect3d 1023.1 579.1, 498.1 EQ
corcol3 13.6 851.3, 733.4 EQ
doitgen 10.4 1069.2, 837.4 EQ
fdtd-1d 6.0 268.7, 229.9 EQ
jacobi-2d-imper 17.7 619.5, 543.5 EQ
matmul 3.2 157.1, 1255 EQ
seidel 24.5 818.1, 725.5 EQ
strsm 6.4 209.3, 161.2 EQ
trisolv 5.1 338.9, 248.8 EQ
ldloop-invar 0.3 6.7, 6.0 EQ
costfunc 0.8 47.4, 35.0 EQ
fusionl 0.9 15.3, 13.9 EQ
Table 1: Evaluation results on Pluto’s test suits
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Coqg development

* Around 18000 lines of Coq, 1000 lines of OCaml. Open source
at https://github.com/verif-scop/PolCert.

e Our work bases on Verlfled Polyhedron L|brary and is syntactically
compatible to PonGen (Verified Polyhedral Code Generation) in
POPL'21.



Future work

* Complete verified polyhedral compilation.
* Verified extractor.
* Engineering in CompCert’s driver & frontend.
* Apply optimistic approach8 to deal with polyhedral model's heavy
assumptions, like integer overflow”.
e Support validation for other polyhedral transformations, like index set
split (as a pre-phrase), tiling (as a post-phrase), layout transformation
(as an orthogonal phrase).

e Support vectorization, parallelization, GPU compilation ...
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Our work:
Verified Validation for Polyhedral Scheduling

 We implement and verify a general validation function Validate for
polyhedral scheduling in Coq proof assistant from scratch. It is
parameterized by instruction language.

* We instantiate Validate with a variant of CompCert's instruction
language, showing its practicality.

* We adapt Validate so that it works with the Pluto compiler. It
successfully validates all its available test cases with reasonable
overhead.
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Original code 7., for covariance matrix calculation, 1.84s

for (j1 = 1; j1 <= M; ji++) {
for (j2 = j1; j2 <= M; j2++) {
for (i=1;i <= N; i++) {
\ Io: symmat[j1][j2] += datali][j1] * datali][j2];
} I;: symmatl[j2][j1] = symmat[j1][;2];
¥

rL,, for covariance matrix calculation, 0.43s, with loop
distribution and loop interchange

Optimized code 7!

for i=1;i <= N;i++){
for (j1=1;j1 <=M, j1++) {
for (j2 = j1; j2 <= M; j2++) {
} symmat[j1][j2] += datali][j1] * data[i][}2];

}
}
for (j1 = 1; j1 <= M; ji++) {
for (j2 = j1; j2 <= M; j2++) {
symmat[j2][j1] = symmat[j1][j2];

O W N A W N e

1

11 }
12 }

o

See at https://github.com/verif-scop/speed-up.



Polyhedral compilation does high-level structural tranformations
and only impose a few properties of the underlying instruction
language (called ). The validation function given in this work is
parameterized by I.

I allows user define the syntax, types, state, semantics of the
language, how it initializes, and its the non-alias proposition. It
demands user to provide a verified Checker function to validate the
consistency between the read and write access function and an
Instruction’s semantics, and prove that any two instances that
satisfy Bernstein's conditions are permutable.
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Compat : List(Ildentifier) — S — Prop

Consistent : List(Identifier x T) — List(Z) — S — Prop
NonAlias : S — Prop
NonAliasPsrv :

VI, o,0’. NonAlias(c) A p = 1,0 —— o’ = NonAlias(c”’).

Checker : | — Access Functions
— Access Functions — Bool
Correct(Checker) :

VI, W, R.Checker(I, W, R) = true
— (Vo,6”, p,Ar, By. plET, 6 202W o1 s AL CR(P) A Ay C W(P)).
BCPermut :
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Figure 1: Definition of Instruction Language Module 1



Case study: Towards verified polyhedral compilation for

CompCert

We instantiate the validation function with CompCert C's type,
state and subset of its instruction language, and implement Checker
with symbolic execution. All verified. Only differences are, affine
expression is evaluated in Z (no overflow), and multi-dimensional
array access is sugarized.

(Base Type)

(Type)

(Value)

(Iterator)

(Unop)

(Binop)

(May Affine Expression)

(Access Expression)

(Expression)
(Base Instruction)

i
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]
op;

I m

M

int32s

Base Type x List(Z)

132(n) | -

N

- ...

+ || ;.0

z|i|lopye|e1op; e
Identifier x Base Type

x List(May Affine Expression)
v|ile|op,ele op,e
skip | e:=e



Polyhedral Compilation

e Extraction -> Scheduling -> Codegen

loop reverse + loop fusion

~>
for 1 in [0, 3] for 1 1n [0,
S B[i] = A[1] + 1 S : B[1] =
for 1 1n [0, 3]: T C[2-1]
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Polyhedral Model

o T T
* An alternative integer-programming-based representation for nested
loop. A polyhedral program is a multiset of polyhedral instructions,
which consists of at least three parts: the instruction, the domain,
and the schedule.

* “Extraction” Lexic,

. > Ordereq, PHicall,
for 1 1n [0, 3]:
S: B[i] = A[i] + 1 { (S, 0<=1<3, [1]1~>[0,1]),
for 1 1n [O, 3]: (T/ O<:i<3/ [l]'\’>[]—rl])}
T: Cl1] = B[2-1] * 3

Executionorder: S[0];S[1]1;S[2]1;T[0]1;T[1]1;T[2]



sjo] sl s

Polyhedral Model

j D
T[0] T[1] T[2]

Our work’s focus!

* “Scheduling”: do reordering transformation on polyhedral model, guided by
dependence analysis.

* Well-designed automatic algorithms, like Pluto’, serve for this purpose.
* Manual scheduling is also possible.

{(S, 0<=i<3, [1]1~>[0,i1), =~ {(S, 0<=i<3, [i]~>...),
(T, 0<=i<3, [1]1~>[1,1i])} (T, 0<=i<3, [i]~>...)}

Old Executionorder: S[0];S[1]1;S[2]1;TI[0];T[1];T[2]



sjo] sl s

Polyhedral Model

j D
T[0] T[1] T[2]

Our work’s focus!

* “Scheduling”: do reordering transformation on polyhedral model, guided by
dependence analysis.

* Well-designed automatic algorithms, like Pluto’, serve for this purpose.
* Manual scheduling is also possible.

Average distance of
dependence’s satisfaction
seems too long. Cache locality.

Old Executionorder: S[0];S[11;S[2]1;TI[0];T[1];T[2]

? https://pluto-compiler.sourceforge.net/
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Polyhedral Model

o] T T}

Our work’s focus!

* “Scheduling”: do reordering transformation on polyhedral model, guided by
dependence analysis.

* Well-designed automatic algorithms, like Pluto’, serve for this purpose.
* Manual scheduling is also possible.

Average distance of Try to minimize the distance

dependence’s satisfaction without breaking dependences!
seems to long.

Old Executionorder: S[0];S[11;S[2]1;TI[0];T[1];T[2]
New execution order: S[0];T[2];S{1];T117;S[2];T[0]

2 ht, 5://pluto-compiler.sourcqforge.net/
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Polyhedral Model

j D
T[0] T[1] T[2]

Our work’s focus!

* “Scheduling”: do reordering transformation on polyhedral model, guided by
dependence analysis.

* Well-designed automatic algorithms, like Pluto’, serve for this purpose.
* Manual scheduling is also possible.

{(s, 0<=i<3, [i]~>[0,i1), ~~ {(s, 0<=i<3, [i]~>[i,01]),
(T, O0<=1<3, [1]~>[1,1]1)} (T, 0<=1i<3, [1]~>[2-1,1])}

Old Executionorder: S[0]1;S[1]1;S[2]1;T[0]1;T[1];
New execution order: S[0];TI[2];



Polyhedral Model

* “Codegen”: recover the imperative control structure from the
optimized polyhedral model.

0<=i<3, [i]~>[i,0]), for 1 in [0, 3]:
0<=1<3, [1]~>[2-1,11)} S Bl1] = Alx]
T: C[2-i] = B[i



