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Background

• Human needs highly optimized compilation techniques for modern 
software.

• Nested loops are optimization targets due to its heavy numerical 
computation.

• Common loop optimizations:
• Apply combination of loop fusion, distribution, interchange, skewing, reverse, 

tiling, …, to improve memory locality and/or parallelizability.
• May further apply vectorization (SIMD) and parallelization (openmp primitives).

• Map it automatically to domain-specific hardware like GPU.



Background

• To do such loop transformations, we need to analyze dependences 
between instructions of different iterations.

for i in [1, N]:

for j in [1, N]:

S:  A[i][j] = A[i+1][j] + A[i-1][j-1]

Can we parallelize it?
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Example

for i in [1, N]:

for j in [1, N]:

S:  A[i][j] = A[i+1][j] + A[i-1][j-1]

Iterations

Execution order

Dependence

Can we parallelize it?
Respecting dependences?
- Not along j. There is inner dependence.
- What about other axis?

- Iteration with same i + j is 
parallelizable



Example

for i in [1, N]:

for j in [1, N]:

S:  A[i][j] = A[i+1][j] + A[i-1][j-1]

Iterations

Execution order

Dependence

Now we may find new execution order.
(Without breaking dependences)



Example

Iterations

Execution order

Dependence

Now we generate a new nested loop 
respecting new execution order.

for j’ in [1, 2*N-1]:

for i’ in [max(1, j’-N+1), 

min(N-1, j’-1)]:

S:  A[i’][(j’-i’)] = A[i’+1][(j’-i’)] 

+ A[i’-1][(j’-i’)-1]
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loop skewing + loop interchange
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Polyhedral Model

for i in [1, N]:

for j in [1, N]:

S:  A[i][j] = A[i+1][j] 

+ A[i-1][j-1]

Iterations – Domain – “The Polyhedron”

Execution order - Schedule

Dependence

for j’ in [1, 2*N-1]:

for i’ in [max(1, j’-N+1), 

min(N-1, j’-1)]:

S:  A[i’][(j’-i’)] = A[i’+1][(j’-i’)] 

+ A[i’-1][(j’-i’)-1]

loop skewing + loop interchange



Polyhedral Compilation

for i in [1, N]:

for j in [1, N]:

S:  A[i][j] = A[i+1][j] 

+ A[i-1][j-1]

extraction codegen

for j’ in [1, 2*N-1]:

for i’ in [max(1, j’-N+1), 

min(N-1, j’-1)]:

S:  A[i’][(j’-i’)] = A[i’+1][(j’-i’)] 

+ A[i’-1][(j’-i’)-1]

scheduling
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Our focus! 
Scheduling can be done manually or by automatic algorithms, like Pluto1.
We want to ensure its correctness.

1 https://pluto-compiler.sourceforge.net/
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Compilation correctness

• For compiler Comp, programs        and       that Comp(      ) = Some     .  

• If       refines (written as              ), we say this compilation is correct.
• It says, from the same beginning state, whenever          terminates at some 

state, then          is able to stop at the same final state.

• Two ways to guarantee correct compilation:
• Compiler proof: reasoning on Comp’s concrete definition to prove

• Verified validation: define a separate validator Validate and prove

• And run Validate after each run of Comp.

- On the one hand, it contains complex heuristic with heavy 
mathematics. Hard/Impractical to verify.

- On the other hand, it has simple validation algorithm due to its simple 
correctness criterion: not breaking dependence.

Why not directly verify the scheduling algorithm?

(Also called Bernstein’s Condition2.)

2
https://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_521



Validating Polyhedral Scheduling
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Validation

Output: true or false(unknown).



Our work: 
Verified Validation for Polyhedral Scheduling
• We implement and verify a general validation function Validate for 

polyhedral scheduling in Coq proof assistant from scratch. It is 
parameterized by instruction language.

• We instantiate Validate with a variant of CompCert's instruction 
language, showing its practicality.

• We adapt Validate so that it works with the Pluto compiler. It 
successfully validates all its available test cases with reasonable 
overhead.



General Verified Validation function
for Polyhedral Scheduling
• We define a validation function Validate that checks Bernstein's 

condition within polyhedral model, and mechanized its correctness 
with the Coq proof assistant.

• It is parametrized by instruction language to be reusable.

• Our top lemma



Case study on CompCert

• What is CompCert
3
? 

• a high-assurance compiler for almost all of the C language (ISO C 2011), 
generating efficient code for the ARM, PowerPC, RISC-V and x86 processors.

• It is not enough optimized4 than production compiler like clang and gcc. So 
aggressive optimizers like polyhedral-based ones do help!

• We successfully instantiate Validate with CompCert’s semantics 
model, showing the possibility towards a fully verified polyhedral 
extension to CompCert.

3 https://compcert.org/

4 https://doi.org/10.1145/3622799



Case study on Pluto compiler

• Loop optimizers like polyhedral-based ones are error prone
5 

indeed! 
So formal methods do help.

• We evaluate on Pluto, one of the famous polyhedral compiler.
• Pluto: ACM SIGPLAN PLDI Most Influential Paper award in 2018

5 https://doi.org/10.1145/3591295

Figure from https://www.csa.iisc.ac.in/~udayb/publications/uday-thesis.pdf, Page 98

https://www.csa.iisc.ac.in/~udayb/publications/uday-thesis.pdf
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Coq development

• Around 18000 lines of Coq, 1000 lines of OCaml. Open source
at https://github.com/verif-scop/PolCert.

• Our work bases on Verified Polyhedron Library
6

and is syntactically 
compatible to PolyGen

7
(Verified Polyhedral Code Generation) in 

POPL'21.

6 https://ieeexplore.ieee.org/document/8750763
7 https://dl.acm.org/doi/10.1145/3434321



Future work

• Complete verified polyhedral compilation.
• Verified extractor.

• Engineering in CompCert’s driver & frontend.

• Apply optimistic approach8 to deal with polyhedral model's heavy 
assumptions, like integer overflow9.    

• Support validation for other polyhedral transformations, like index set 
split (as a pre-phrase), tiling (as a post-phrase), layout transformation 
(as an orthogonal phrase). 

• Support vectorization, parallelization, GPU compilation …

8 https://dl.acm.org/doi/10.5555/3049832.3049864
9 https://inria.hal.science/hal-00655485
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Our work: 
Verified Validation for Polyhedral Scheduling
• We implement and verify a general validation function Validate for 

polyhedral scheduling in Coq proof assistant from scratch. It is 
parameterized by instruction language.

• We instantiate Validate with a variant of CompCert's instruction 
language, showing its practicality.

• We adapt Validate so that it works with the Pluto compiler. It 
successfully validates all its available test cases with reasonable 
overhead.



See at https://github.com/verif-scop/speed-up.









Polyhedral Compilation

• Extraction -> Scheduling -> Codegen

~>
for i in [0, 3]:

S:   B[i] = A[i] + 1

T:   C[2-i] = B[i] * 3

loop reverse + loop fusion

for i in [0, 3]:

S:   B[i] = A[i] + 1

for i in [0, 3]:

T:   C[i] = B[2-i] * 3



Polyhedral Model

• An alternative integer-programming-based representation for nested 
loop. A polyhedral program is a multiset of polyhedral instructions, 
which consists of at least three parts: the instruction, the domain, 
and the schedule.

• “Extraction”

{(S, 0<=i<3, [i]~>[0,i]), 

(T, 0<=i<3, [i]~>[1,i])}

for i in [0, 3]:

S:   B[i] = A[i] + 1

for i in [0, 3]:

T:   C[i] = B[2-i] * 3

~>

Execution order:  S[0];S[1];S[2];T[0];T[1];T[2]



Polyhedral Model

• “Scheduling”: do reordering transformation on polyhedral model, guided by 
dependence analysis. 

• Well-designed automatic algorithms, like Pluto
2
, serve for this purpose.

• Manual scheduling is also possible.

• Recall the correctness criterion: Bernstein’s condition.

{(S, 0<=i<3, [i]~>...),

(T, 0<=i<3, [i]~>...)}
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Try to minimize the distance 
without breaking dependences!



Polyhedral Model

• “Scheduling”: do reordering transformation on polyhedral model, guided by 
dependence analysis. 

• Well-designed automatic algorithms, like Pluto
2
, serve for this purpose.

• Manual scheduling is also possible.

• Recall the correctness criterion: Bernstein’s condition.

{(S, 0<=i<3, [i]~>[i,0]),

(T, 0<=i<3, [i]~>[2-i,1])}

{(S, 0<=i<3, [i]~>[0,i]), 

(T, 0<=i<3, [i]~>[1,i])}
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~>
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Polyhedral Model

• “Codegen”: recover the imperative control structure from the 
optimized polyhedral model. 

{(S, 0<=i<3, [i]~>[i,0]),

(T, 0<=i<3, [i]~>[2-i,1])}

~>
for i in [0, 3]:

S:   B[i] = A[i] + 1

T:   C[2-i] = B[i] * 3


