
Verified Validation for
Polyhedral Scheduling

Xuyang Li, Hongjin Liang, Xinyu Feng

Nanjing University

Background

• Human needs highly optimized compilation techniques for modern
software.

• Nested loops are optimization targets due to its heavy numerical
computation.

• Common loop optimizations:
• Apply combination of loop fusion, distribution, interchange, skewing, reverse,

tiling, …, to improve memory locality and/or parallelizability.
• May further apply vectorization (SIMD) and parallelization (openmp primitives).

• Map it automatically to domain-specific hardware like GPU.

Background

• To do such loop transformations, we need to analyze dependences
between instructions of different iterations.

for i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j] + A[i-1][j-1]

Can we parallelize it?

Example

for i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j] + A[i-1][j-1]

Iterations

Execution order

Example

for i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j] + A[i-1][j-1]

Iterations

Execution order

Dependence

Example

for i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j] + A[i-1][j-1]

Iterations

Execution order

Dependence

Example

for i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j] + A[i-1][j-1]

Iterations

Execution order

Dependence

Example

for i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j] + A[i-1][j-1]

Iterations

Execution order

Dependence

Can we parallelize it?
Respecting dependences?

Example

for i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j] + A[i-1][j-1]

Iterations

Execution order

Dependence

Can we parallelize it?
Respecting dependences?
- Not along j. There is inner dependence.
- What about other axis?

Example

for i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j] + A[i-1][j-1]

Iterations

Execution order

Dependence

Can we parallelize it?
Respecting dependences?
- Not along j. There is inner dependence.
- What about other axis?

- Iteration with same i + j is
parallelizable

Example

for i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j] + A[i-1][j-1]

Iterations

Execution order

Dependence

Now we may find new execution order.
(Without breaking dependences)

Example

Iterations

Execution order

Dependence

Now we generate a new nested loop
respecting new execution order.

for j’ in [1, 2*N-1]:

for i’ in [max(1, j’-N+1),

min(N-1, j’-1)]:

S: A[i’][(j’-i’)] = A[i’+1][(j’-i’)]

+ A[i’-1][(j’-i’)-1]

Example

for i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j]

+ A[i-1][j-1]

for j’ in [1, 2*N-1]:

for i’ in [max(1, j’-N+1),

min(N-1, j’-1)]:

S: A[i’][(j’-i’)] = A[i’+1][(j’-i’)]

+ A[i’-1][(j’-i’)-1]

loop skewing + loop interchange

Polyhedral Model

for i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j]

+ A[i-1][j-1]

loop skewing + loop interchange

for j’ in [1, 2*N-1]:

for i’ in [max(1, j’-N+1),

min(N-1, j’-1)]:

S: A[i’][(j’-i’)] = A[i’+1][(j’-i’)]

+ A[i’-1][(j’-i’)-1]

Polyhedral Model

for i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j]

+ A[i-1][j-1]

Iterations – Domain – “The Polyhedron”

Execution order - Schedule

Dependence

for j’ in [1, 2*N-1]:

for i’ in [max(1, j’-N+1),

min(N-1, j’-1)]:

S: A[i’][(j’-i’)] = A[i’+1][(j’-i’)]

+ A[i’-1][(j’-i’)-1]

loop skewing + loop interchange

Polyhedral Compilation

for i in [1, N]:

for j in [1, N]:

S: A[i][j] = A[i+1][j]

+ A[i-1][j-1]

extraction codegen

for j’ in [1, 2*N-1]:

for i’ in [max(1, j’-N+1),

min(N-1, j’-1)]:

S: A[i’][(j’-i’)] = A[i’+1][(j’-i’)]

+ A[i’-1][(j’-i’)-1]

scheduling

Polyhedral Compilation

Nested
Loop

Polyhedral
Model

Polyhedral
Model

Nested
Loop

scheduling codegenextraction

Polyhedral Compilation

Nested
Loop

Polyhedral
Model

Polyhedral
Model

Nested
Loop

scheduling codegenextraction

Our focus!
Scheduling can be done manually or by automatic algorithms, like Pluto1.
We want to ensure its correctness.

1 https://pluto-compiler.sourceforge.net/

Compilation correctness

• For compiler Comp, programs and that Comp() = Some .

• If refines (written as), we say this compilation is correct.
• It says, from the same beginning state, whenever terminates at some

state, then is able to stop at the same final state.

Compilation correctness

• For compiler Comp, programs and that Comp() = Some .

• If refines (written as), we say this compilation is correct.
• It says, from the same beginning state, whenever terminates at some

state, then is able to stop at the same final state.

• Two ways to guarantee correct compilation:
• Compiler proof: reasoning on Comp’s concrete definition to prove

• Verified validation: define a separate validator Validate and prove

• And run Validate after each run of Comp.

Compilation correctness

• For compiler Comp, programs and that Comp() = Some .

• If refines (written as), we say this compilation is correct.
• It says, from the same beginning state, whenever terminates at some

state, then is able to stop at the same final state.

• Two ways to guarantee correct compilation:
• Compiler proof: reasoning on Comp’s concrete definition to prove

• Verified validation: define a separate validator Validate and prove

• And run Validate after each run of Comp.

- On the one hand, it contains complex heuristic with heavy
mathematics. Hard/Impractical to verify.

- On the other hand, it has simple validation algorithm due to its simple
correctness criterion: not breaking dependence.

Why not directly verify the scheduling algorithm?

(Also called Bernstein’s Condition2.)

2
https://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_521

Validating Polyhedral Scheduling

Nested
Loop

Polyhedral
Model

Polyhedral
Model

Nested
Loop

scheduling codegenextraction

Validation

Output: true or false(unknown).

Our work:
Verified Validation for Polyhedral Scheduling
• We implement and verify a general validation function Validate for

polyhedral scheduling in Coq proof assistant from scratch. It is
parameterized by instruction language.

• We instantiate Validate with a variant of CompCert's instruction
language, showing its practicality.

• We adapt Validate so that it works with the Pluto compiler. It
successfully validates all its available test cases with reasonable
overhead.

General Verified Validation function
for Polyhedral Scheduling
• We define a validation function Validate that checks Bernstein's

condition within polyhedral model, and mechanized its correctness
with the Coq proof assistant.

• It is parametrized by instruction language to be reusable.

• Our top lemma

Case study on CompCert

• What is CompCert
3
?

• a high-assurance compiler for almost all of the C language (ISO C 2011),
generating efficient code for the ARM, PowerPC, RISC-V and x86 processors.

• It is not enough optimized4 than production compiler like clang and gcc. So
aggressive optimizers like polyhedral-based ones do help!

• We successfully instantiate Validate with CompCert’s semantics
model, showing the possibility towards a fully verified polyhedral
extension to CompCert.

3 https://compcert.org/

4 https://doi.org/10.1145/3622799

Case study on Pluto compiler

• Loop optimizers like polyhedral-based ones are error prone
5

indeed!
So formal methods do help.

• We evaluate on Pluto, one of the famous polyhedral compiler.
• Pluto: ACM SIGPLAN PLDI Most Influential Paper award in 2018

5 https://doi.org/10.1145/3591295

Figure from https://www.csa.iisc.ac.in/~udayb/publications/uday-thesis.pdf, Page 98

https://www.csa.iisc.ac.in/~udayb/publications/uday-thesis.pdf

Case study on Pluto compiler

• Loop optimizers like polyhedral-based ones are error prone
5

indeed!
So formal methods do help.

• We evaluate on Pluto, one of the famous polyhedral compiler.
• Pluto: ACM SIGPLAN PLDI Most Influential Paper award in 2018

5 https://doi.org/10.1145/3591295

extraction scheduling codegen

Validation

Case study on Pluto compiler

• Loop optimizers like polyhedral-based ones are error prone5 indeed!
So formal methods do help.

• We evaluate on Pluto, one of the famous polyhedral compiler.
• Pluto: ACM SIGPLAN PLDI Most Influential Paper award in 2018

• Work and work well with Pluto compiler: successfully validate its all 62
available test cases.
• Not just a research prototype: work as an executable on practical polyhedral

compiler.
• Soundness v.s. completeness:

• Formal verification proves the algorithm soundness: guarantee refinement whenever it
outputs true.

• The evaluation shows validation’s algorithm completeness: if refinement establishes on
inputs, the algorithm tries its best to output true rather than unknown!

• Also, the algorithm has reasonable overhead.

5 https://doi.org/10.1145/3591295

Case study on Pluto compiler

• Loop optimizers like polyhedral-based ones are error prone5 indeed!
So formal methods do help.

• We evaluate on Pluto, one of the famous polyhedral compiler.
• Pluto: ACM SIGPLAN PLDI Most Influential Paper award in 2018

• Work and work well with Pluto compiler: successfully validate its all 62
available test cases.
• Not just a research prototype: work as an executable on practical polyhedral

compiler.
• Soundness v.s. completeness:

• Formal verification proves the algorithm soundness: guarantee refinement whenever it
outputs true.

• Theevaluation shows validation’s algorithm completeness: if refinement establishes on inputs,
the algorithm tries its best to output true rather than unknown!

• Also, the algorithm has reasonable overhead.

5 https://doi.org/10.1145/3591295

Coq development

• Around 18000 lines of Coq, 1000 lines of OCaml. Open source
at https://github.com/verif-scop/PolCert.

• Our work bases on Verified Polyhedron Library
6

and is syntactically
compatible to PolyGen

7
(Verified Polyhedral Code Generation) in

POPL'21.

6 https://ieeexplore.ieee.org/document/8750763
7 https://dl.acm.org/doi/10.1145/3434321

Future work

• Complete verified polyhedral compilation.
• Verified extractor.

• Engineering in CompCert’s driver & frontend.

• Apply optimistic approach8 to deal with polyhedral model's heavy
assumptions, like integer overflow9.

• Support validation for other polyhedral transformations, like index set
split (as a pre-phrase), tiling (as a post-phrase), layout transformation
(as an orthogonal phrase).

• Support vectorization, parallelization, GPU compilation …

8 https://dl.acm.org/doi/10.5555/3049832.3049864
9 https://inria.hal.science/hal-00655485

Q&A

Our work:
Verified Validation for Polyhedral Scheduling
• We implement and verify a general validation function Validate for

polyhedral scheduling in Coq proof assistant from scratch. It is
parameterized by instruction language.

• We instantiate Validate with a variant of CompCert's instruction
language, showing its practicality.

• We adapt Validate so that it works with the Pluto compiler. It
successfully validates all its available test cases with reasonable
overhead.

See at https://github.com/verif-scop/speed-up.

Polyhedral Compilation

• Extraction -> Scheduling -> Codegen

~>
for i in [0, 3]:

S: B[i] = A[i] + 1

T: C[2-i] = B[i] * 3

loop reverse + loop fusion

for i in [0, 3]:

S: B[i] = A[i] + 1

for i in [0, 3]:

T: C[i] = B[2-i] * 3

Polyhedral Model

• An alternative integer-programming-based representation for nested
loop. A polyhedral program is a multiset of polyhedral instructions,
which consists of at least three parts: the instruction, the domain,
and the schedule.

• “Extraction”

{(S, 0<=i<3, [i]~>[0,i]),

(T, 0<=i<3, [i]~>[1,i])}

for i in [0, 3]:

S: B[i] = A[i] + 1

for i in [0, 3]:

T: C[i] = B[2-i] * 3

~>

Execution order: S[0];S[1];S[2];T[0];T[1];T[2]

Polyhedral Model

• “Scheduling”: do reordering transformation on polyhedral model, guided by
dependence analysis.

• Well-designed automatic algorithms, like Pluto
2
, serve for this purpose.

• Manual scheduling is also possible.

• Recall the correctness criterion: Bernstein’s condition.

{(S, 0<=i<3, [i]~>...),

(T, 0<=i<3, [i]~>...)}

{(S, 0<=i<3, [i]~>[0,i]),

(T, 0<=i<3, [i]~>[1,i])}

2 https://pluto-compiler.sourceforge.net/

~>

Old Execution order: S[0];S[1];S[2];T[0];T[1];T[2]

Polyhedral Model

• “Scheduling”: do reordering transformation on polyhedral model, guided by
dependence analysis.

• Well-designed automatic algorithms, like Pluto
2
, serve for this purpose.

• Manual scheduling is also possible.

• Recall the correctness criterion: Bernstein’s condition.

{(S, 0<=i<3, [i]~>...),

(T, 0<=i<3, [i]~>...)}

{(S, 0<=i<3, [i]~>[0,i]),

(T, 0<=i<3, [i]~>[1,i])}

2 https://pluto-compiler.sourceforge.net/

~>

Old Execution order: S[0];S[1];S[2];T[0];T[1];T[2]

Average distance of
dependence’s satisfaction
seems too long. Cache locality.

Polyhedral Model

• “Scheduling”: do reordering transformation on polyhedral model, guided by
dependence analysis.

• Well-designed automatic algorithms, like Pluto
2
, serve for this purpose.

• Manual scheduling is also possible.

• Recall the correctness criterion: Bernstein’s condition.

{(S, 0<=i<3, [i]~>...),

(T, 0<=i<3, [i]~>...)}

{(S, 0<=i<3, [i]~>[0,i]),

(T, 0<=i<3, [i]~>[1,i])}

2 https://pluto-compiler.sourceforge.net/

~>

New execution order: S[0];T[2];S[1];T[1];S[2];T[0]

Old Execution order: S[0];S[1];S[2];T[0];T[1];T[2]

Average distance of
dependence’s satisfaction
seems to long.

Try to minimize the distance
without breaking dependences!

Polyhedral Model

• “Scheduling”: do reordering transformation on polyhedral model, guided by
dependence analysis.

• Well-designed automatic algorithms, like Pluto
2
, serve for this purpose.

• Manual scheduling is also possible.

• Recall the correctness criterion: Bernstein’s condition.

{(S, 0<=i<3, [i]~>[i,0]),

(T, 0<=i<3, [i]~>[2-i,1])}

{(S, 0<=i<3, [i]~>[0,i]),

(T, 0<=i<3, [i]~>[1,i])}

2 https://pluto-compiler.sourceforge.net/

~>

New execution order: S[0];T[2];S[1];T[1];S[2];T[0]

Old Execution order: S[0];S[1];S[2];T[0];T[1];T[2]

Polyhedral Model

• “Codegen”: recover the imperative control structure from the
optimized polyhedral model.

{(S, 0<=i<3, [i]~>[i,0]),

(T, 0<=i<3, [i]~>[2-i,1])}

~>
for i in [0, 3]:

S: B[i] = A[i] + 1

T: C[2-i] = B[i] * 3

